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Let {uo , UI , ... Un-I} and {uo , UI , ... , un} be Tchebycheff-systems of continuous
functions on [a, b] and let /E C[a, b] be generalized convex with respect to
{uo , U] ,... , Un_I}' In a series of papers ([1], [2], [3]) D. Amir and Z. Ziegler discuss
some properties of elements of best approximation to / from the linear spans of
{uo , UI , ... , Un-I] and {uo , UI , ... , un} in the Lp-norms, 1 <; p <; 00, and show (under
different conditions for different values of p) that these properties, when valid
for all subintervals of [a, b], can characterize generalized convex functions.
Their methods of proof rely on characterizations of elements of best approxima
tion in the Lp-norms, specific for each value of p. This work extends the above
results to approximation in a wider class of norms, called "sign-monotone,"
[6], which can be defined by the property: l j(x)! <; : g(x)l, j(x)g(x) ;;;, 0, a <; x
b, imply :111 <; II g II. For sign-monotone norms in general, there is neither
uniqueness of an element of best approximation, nor theorems characterizing
it. Nevertheless, it is possible to derive many common properties of best ap
proximants to generalized convex functions in these norms, by means of the
necessary condition proved in [6]. For {uo , U, , .•. , un} an Extended-Complete
Tchebycheff-system and/E CU<l[a, b] it is shown that the validity of any of these
properties on all subintervals of [a, b], implies that / is generalized convex. In the
special case of / monotone with respect to a positive function uo(x), a converse
theorem is proved under less restrictive assumptions.

1. NOTATIONS AND PRELIMINARIES

Let {uo , ul , ..• , Un-I} and {Uo , UI , ..• , Un-I' un} be positive Tchebycheff
systems (T-systems) on [a, b], i.e.,

Uo(Xo) Uo(xl ) UO(Xk)

Ll (UO, UI ,... , Uk) ulxo) uixl) UI(Xk) >0 (1.1)
Xo , Xl"'" X"

Uk(XO) Uk(XI) Uk(Xk.)

for all a < Xo < Xl < '" < Xk < band k == n - 1 or n. We denote by
A n- l = An_l[a, b] (An = An[a, b]) the linear span of {uo, UI ,... , Un-I}

350
0021-9045/78/0244-0350$02.00/0
Copyright © 1978 by Academic Press. Inc.
All rights of reproduction in any form reserved.



GENERALIZED CONVEX FUNCTIONS 351

({Uo , UI ,... , un}) and by C(Uo , UI ,... , Un-I) the cone of all "generalized convex"
functions, i.e., functions for which

A ( UO' UI ,... , Un-I' /) = A(f, . )
-'J -'J ,XO ' Xl"'" X n

Xo , Xl'"'' X n - l , X n

Uo(Xo) Uo(Xn)
UI(XO) UI(Xn)

;:?- O. (I.2)
Un-I(XO) Un-leX,,)
j(xo) j(xn)

As introduced in [6] we call a norm II . II defined on C[a, b] "sign-monotone"
provided:

j(X) . g(x) ;:?- 0, I j(X) I ~ Ig(x)l, a ~ X ~ b, implies II/II ~ 11 gil·
(1.3)

As shown in [6] this class of norms is wider than the class of "monotone
norms" (norms for which I j(X) [ ~ Ig(x)l, a ~ X ~ b, implies IIIII ~ II gil).
All weighted Lp-norms (denoted by 11'111')' 1 ~ p ~ 00, are obviously
monotone norms (and thus sign-monotone norms).

Properties of monotone norms and sign-monotone norms are discussed
in detail in [5] and [6]. One of these properties which will be used extensively
in the sequel is

II/II ~ 211111 '11/1100 /E C[a, b] (1.4)

where 1111100 = maxa<x<b Ij(x)l·
Following the notation in [4] we call an isolated zero X o ofIE C[a, b] in

(a, b) "nonnodal" ifI does not change sign at X o . All other isolated zeroes
offare called "nodal." The number of isolated zeroes offin [a, b] is denoted
by z(f) while their number with nonnodal zeroes counted twice is denoted
by z(f).

In [6] a necessary condition for T;_l E A n- l to be a "polynomial" of best
approximation (p.b.a) to a function fE C[a, b] with respect to a sign
monotone norm is given. This condition is valid under anyone of the
following restrictions imposed on the T-system {uo , UI ,... , Un-I}:

{Uo , UI '00" Un -2} is a T-system on [a, b]

or

{Uo , UI ,,,;, Un-I} is a T-system on [a'b'], a' < a < b < b'.

(1.5)

(1.6)

{uo , UI ,... , Un-I} is extended of order 2 on [a, b]. (1.7)



352 E. KlMCHl

THEOREM 1.1 [6]. Let fE qa, b] and let {uo , UI , ... , Un-I! be aT-system
satisfying one of the properties (1.5), (1.6) or (1.7). If T';_I is a p.b.a. to f from
A~_I in a sign-monotone norm, such that f - T,;_I has only isolated zeroes,
then z(f - Tn-I) n.

This result is best possible in the sense that there are monotone norms
for which z(f - T,;_I) = n :> z(f - T:i-I)' (See ex. 2.1 in [5]).

There are also monotone norms for which T,;_I is nonunique [5], [6] and
therefore we refer hereby to "an" element of best approximation.

In this work we also discuss the problem of best approximating a given
function f E [a, b] on subintervals of [a, b]. When the norm under consider
ation is an L,,-norm (1 ~ p ~ (0), one naturally uses the same norm on any
subinterval of [a, b]. It is of special interest to see that with each sign
monotone norm on C[a, b], it is possible to associate sign-monotone norms
li']iI defined on C(I), I = [ex,,8] C [a, b], in such a way that T(j, II '111)' a
p.b.a. to f E q a, b] on I from An(I), with respect to Ii . 1'1 , is a "continuous"
function of the interval. Since T(f, II . III) may be nonunique, the concept of
"continuity" here is explained in detail in the following theorem:

THEOREM 1.2. For every sign-monotone norm !i . i, defined on qa, b] it is
possible to define sign-monotone norms 11 • IlIon C(I) for all subintervals I of
[a, b] in such a way that if 1m = [exm , ,8m] C [a, b], m = 1,2,3,... satis/!,
limm_", exm = exo < ,80 = limm~",,8m, [exo , ,80] = 10C [a, b), and if Tm cc=

T(j, I: . IIIJ is a p.b.a. to fE qa, b] from An on 1m with respect to the norm
II . !II

m
' then there exists a subsequence {Tm);:1 converging umformly on [a, b]

to a polynomial To = T(j, II . lid E An which is a p.b.a. to ffrom An on III with
respect to the norm II . 1:1

0
•

Proof Let us associate with each subinterval I = [ex,,8] C [a, b] the
linear function (Mt) = [(ex - ,8)/(a - b)](t - b) +,8 which maps [a, b]
onto [ex, ,8], and for a given sign-monotone norm Ii . lion qa, b], define

II gill = II g(<PI)II g E C(I). (1.8)

Since g(<PI) E qa, b], II '111 is well defined, and moreover it is easy to see
that II . III is a sign-monotone norm on C(/). Therefore (1.4) implies that for
every g E C(I)

II g III ~ 2 III III max Ig(x)l.
xEI

But from the definition (1.8) it follows that II 1 III = ill II and thus, jf
fE qa, b] we get

fill ~ 21 1 I 1111fl", (Iifl!", = max I f(x)l)
a<:x~b

(1.9)
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where by 11/111 we mean the norm of the restriction ofI to the subinterval I.
Under the assumptions of the theorem it is also clear that

lim Ilflll = Ull l fE C[a, b].
m---'j,:(: 1n 0

(1.1 0)

This follows easily from (1.9) and from the fact that the sequence of functions
{f",}:~l , fm(x) = J( cPlm(X)) m = 1, 2, ... , converges uniformly on [a, b] to
fo(x) = J(cPIJX)) E C[a, b].

Now, using the following notations: E"'m = III - Tm III , m = 1,2,... ,
Eo = infTEA Ilf - Till' and E = infTEA Ilf - Tlloo = Ilf~ 1'1100, we first

n A-I

show that there exists a constant M independent of m such that

m = 1,2,.... (1.11)

Indeed, by (1.9):

Ii Tm111m~ i: Tm- flkn + Ilflilm

:'(. ilf - l' 111m + Ilflllm ~ 211 1 Ii E + 2111 II . ilflioo .

Standard compactness arguments (see for example [7] p. 16) imply that {Tm }

has a subsequence, denoted again by {Tm }, converging uniformly to To E A n- 1 •

But (1.8), (1.4) and the triangle inequality yield:

I Em - Ilf - To 1110 I = Illf - Tm lilm - Ilf -- To 1110 I

= III J( cPlm) - Tm( cPl)11 - II J(cPlo) - To(cPIO) 1I 1

~ II J( cPlm) - J( cPl.) + To(cPlo) - Tm(cPlm)11

~ IIJ(cPl) - J(cPlo)11 + II TO(cPl.) - Tm(cPIJII

~ 2 II I I1II J(cPIJ - J(cPIO) I100

+ 2 II I II1I To(cPlo) - Tm(cPIJIloo .

Since the last expression tends to zero as m -+ 00, we get

(1.12)

On the other hand, if T is any p.b.a to f on 10 in the norm II . III then:o

Em = Ilf - Tmlilm ~ Ilf - T 111m= Ilf(cPlm) - T(cPlm) II

~ IIJ(cPl) - J(cPlo)11 + IIJ(cPlo) - T(cPlo)11 + Ii T(cPlo) - T(cPIJII

~ 2 II 1 III! J(cPIJ - J( cPlo)lloo + Ilf - T 1110 + 2 II 1 IIII T(cPlo) - T(cP1m)I100
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and as m ->- 00 we get

lim Em
In---+ Y;

E. K1MCHI

This, combined with (1.12) completes the proof of the theorem.
For the sup-norm on [a, b] definition (1.8) yields the sup-norm on every

subinterval of [a, b], and for the Lp-norms, 1 ~ P < 00, it yields II gill =u: Ig(4)lt)W dt)l/P which is a constant multiple of (f~ Ig(xW dX)I/P. Yet,
it should be noted that for our purposes, any definition having the continuity
property expressed in Theorem 1.2 is applicable.

Therefore we call a class of sign-monotone norms:

{Ii· III , II . III is defined on C(I), I C [a, b]}

"continuous", provided there is continuity of the polynomials of best
approximation to any fE C[a, b] with respect to the change of the sub
intervals, in the sense of Theorem 1.2.

It is interesting to note that the definition of I! . III in [5] as

IlfilI = sup{11 h II, hE C[a, b] I h(x)i ~ I j(x) [ a ~ x ~ b,

h(x) = 0 X E [a, b] - I}

which is natural for the problem discussed there, does not always yield a
continuous class of norms.

2. NECESSARY CONDITIONS FOR GENERALIZED CONVEXITY

In this section we study some properties of polynomials of best approxi
mation from A n- l and An in a given sign-monotone norm II . Ii to functions
fE C[a, b] which satisfy either

or

(2.1)

forall [cx,f3jC[a,b]. (2.2)

It is easily seen that (2.2) implies

for all a ~ Xo < Xl < ... < X n ~ b

and therefore {uo , UI , ... , Un-I' f} form a T-system in this case.
The first two lemmas concern functions which satisfy (2.1).

(2.3)
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LEMMA 2.1. Let fE C[a, b] satisfy (2.1). Then either f has only isolated

zeroes with °~ z(f) ~ n, or it vanishes on a subinterval [(X, ,8] C [a, b] and is
different from zero elsewhere in [a, b].

Proof Suppose first thatfvanishes on a subinterval [(X,,8] C [a, b] and
that it has a zero y rf= [(X, ,8]. Without loss of generality we treat only the case
,8 < y ~ b. For {Io , II '00" In~l} C [(X,,8] and x a point where f(x) # °
,8 < x < y we then obviously have:

..d(f, 10 , II , ... , tn-I, x) . ..d(f, to, II ,... , In- 2 , x, y) < °
which contradicts (2.1).

In case f has only isolated zeroes and z(f) > n + 1 the same arguments
as above lead to a contradiction. Suppose therefore that z(f) > n andfhas
less than n -L 1 isolated zeroes (and thus at least one of them nonnodal).
We construct a set of n + 1 points a ~ to < II < ... < In ~ b such that
the values {f(li)}7~0 alternate in sign in the sense that

i = 0, I, ... , n (2.4)

with at least one of them nonzero. This can be done by including in
{Io , II ,... , In} all the zeroes off, and if tv is a nonnodal zero off then either
Iv- 1 = tv - E or IV+1 = Iv + E (E > °small enough). In view of (2.4), the
determinant ..d(f, 10 , II ,... , In) expanded along its last row is easily seen to be
negative, in contradiction to (2.1).

LEMMA 2.2. Let f E era, b] salisfy (2.1). If f(x) vanishes on a subinterval
[(X,,8] C [a, b] Ihen if,8 < b

and if (X > a

f(x) > 0,

(_1)n f(x) > 0, a ~ x < (X.

(2.5)

(2.6)

Ifz(f) = n and a ~ ZI < Z2 < ... < Zk ~ b are the zeroes off(x) in [a, b]
then for Zk < b

while for Zk = b

f(x) > 0,

f(x) < 0, Zk~1 < X < b.

(2.7)

(2.8)
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Proof. In case lex) vanishes on [ex,J3]' 13 < b we have for 0: to
tI t n 1 <. 13 x b:

o.

This proves (2.5) since

and by Lemma 2.1 l(x) I, O. For ex > a (2.6) is proved similarly. If z(f) n
and Zk < x 0::';; b, we construct a set of points a :S; to < tI < ... < tn - I <
x ~ b for which (-I)hIf(tn __J?: 0 i = 1,2,... ,n. This can be done by
including in {to, tI ,... , tn-I} all the zeroes of f (x) where for each nonnodal
zero tv, either tV~I = tv - E or t'+1 c= tv -+- E (E > 0 small enough). Thus

,1«(' ) f() A ('uo,UI,... , Un· 1) , ..
.<:J • , to, t1 , ... , tn ' l ,X =. x '.<:J . -r nonposltlve terms

to,tl ... ·'tnl ·

and (2.7) is proved as above. To prove (2.8) we calculate .d(f, to, tl , .... tn2 ,
x, b) where {to, tl ,... , tn- 2} is chosen in a similar manner.

Jn the following theorems which are easy consequences of Theorem 1.1
and the lemmas, we assume that {uo , Ul , ... , urH} is a T-system satisfying one
of the conditions (1.5), (1.6) or (1.7).

THEOREM 2.1. Let f E qa, b] satisfy (2.1), and let Tr;~l E An -1 be any p.b.a.
to f from A n--l in a sign-monotone norm Ii . II. Then either all the zeroes of
f - T';_l are isolated with z(f - TLl) = n or f - T';_l vanishes on a sub
interval of [a, b] and is different from zero elsewhere in [a, b]. In both cases, if
feb) - TLl(b) oF °then the last sign off - T;_l in [a, b) is positive. Ifb is an
isolated zero off - T';.l then the last sign off - T;_l in [a, b] is negative.

Proof. Since for every a ~ to < tI < ... < tn ~ b and every Tn~l E A n- 1

we getf - Tr;_l E C(uo , U1 , ... , Un-I)' Thus, the proof of the theorem follows
directly from Theorem 1.1, Lemma 2.1 and Lemma 2.2.

(Obviously, for lex) satisfying (2.2) the possibility of nonisolated zeroes of
f - TLI is excluded).

THEOREM 2.2. Let T,; = L;'~o aiUi be any p.b.a. to fE qa, b] from An
in a sign-monotone norm !j . 'I. Then for f satisfying (2.1) an ?: 0, while for f
satisfying (2.2) an > O.
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Proof Suppose (2.1) is satisfied and assume an < O. Then, for every
a ~ to < t1 < ... < t n ~ b

Therefore {uo , U1 , ... , Un-1,f ~ T;} is a T-System on [a, b] implying that
f - T; has only isolated zeroes in [a, b] with z(f - T;) < n + I, in
contradiction to Theorem 1.1.

Suppose now that (2.2) is satisfied, while an = O. This means that T; E A n- 1
and by (2.3)

for every a ~ to < t1 < ... < tn ~ b, and we are led to the same contra
diction as above.

As is proved in [1] and [3] for the Lv-norms, 1 < p ~ 00, assumption (2.1)
together with the assumption thatfrt A n_1[a, b] imply an > O. This however
is not true for every sign-monotone norm, as is demonstrated in [3] by an
example concerning best approximation in the L1-norm.

We conclude this section by proving

THEOREM 2.3. LetfE era, b] satisfy (2.2) and let E n- 1(f) = E n- 1(f, II . II)
and En(f) = En(f, II . II) be its degrees of approximation by polynomials from
A n- 1 and An respectively, with respect to a sign-monotone norm II . II. Then

Proof Since A n- 1 C An we obviously have E n- 1(f) ~ En(f). If En-lf) =
En(f) then every p.b.a. toffrom An~l is also a p.b.a. toffrom An for which
an = O. This contradicts Theorem 2.2.

3. SUFFICIENT CONDITIONS FOR f TO BE GENERALIZED CONVEX

As is shown in [1], [2] and [3] by a general category argument, there is no
direct converse to the results in Section 2 for the Lv-norms 1 ~ P ~ 00.

Yet, converse theorems involving conditions on all subintervals of [a, b]
are easily derived in case {uo, U1 ,... , Un-I' un} is an Extended Complete
T-System (ECT-System) [4] andfE Cln)[a, b].

In this case

fE C(uo , U1 ,... , Un-I) on [iX,!=lJ
if and only if D n - 1Dn - 2 '" Dof ~ 0 on [iX,!=lJ (3.1)
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where Dn - 1 , Dn - 2 , .•. , Do are the differential operators associated with the
ECT-System ([4] Chap. XI).

In order to formulate the next results, let T::_1(j, 'i,), T,;U: . ill,
anU; . iii)' En- 1U; . !'l) and EnU; il . ill) be the same as above, with respect
to the restriction off to the subintervallC [a, b] and a sign-monotone norm
II . iiI defined on q/).

First we prove a converse to Theorem 2.2:

THEOREM 3.1. Let {uo , U1 , ••• , un} be an ECT-System on [a, b] and
fE Cln)[a, b]. If for every subintervallC [a, b] there exists a sign-monotone
norm il . II, and an element ofbest approximation Tif, I: . t!l) to f from .I1n such

that anU, il . IiI) ~ 0, then f E quo, U1 "00' Un-I)'

Proof In view of (3.1) and continuity arguments, f ¢: quo, U1 '00" Un-I)
implies the existence of a subinterval I = [ex,,8] C [a, b] on which
L1( - f, to , t1 ,,,., tn) > 0 for all ex :S; to < t1 < ". < tn :S; ,8. By Theorem 2.2
this means that ([nCr, II '11,) < 0 for every p.b.a Tn(f, 1I . Ii,) to ffrom .I1n on
I = [ex, ,8] and every sign monotone norm Ii . II, defined on C[ex,,8], which is
a contradiction.

In the last theorem, there is no connection between the norms which are
associated with the subintervals of [a, b]. The proofs of the converses to
Theorems 2.1 and 2.3, however, rely on the continuous change of the
polynomials of best approximation with respect to the change of the interval.
Therefore, the next theorem is formulated in terms of a continuous class of
sign-monotone norms, and makes use of the following observation:

LEMMA 3.1. Let {il '11" II . ii, is defined on ql), I = [ex,,8] C [a, b]} be a
continuous class of sign-monotone norms, and let f E C[a, b]. If Tn(f, II . !I,) =
L;~o akuk is a p.b.a to f from .I1n on I with respect to the sign-monotone norm
II . II" then an = an(f, II . II,) as a multivalued function of the subinterval I,
admits all intermediate values.

Proof The proof of the lemma follows directly from the definition of a
"continuous" class of norms and the fact that for each subinterval I C [a, b)
the set {T I T E .I1n , II f - Till = E(f, II . liE)} is convex.

THEOREM 3.2. Let {uo , u1 '00" un} be an ECT-System, let {II' 111,11 . [I, is
defined on qI), I = [ex,,8] C [a, b]} be a continuous class of sign-monotone
norms, and letfE Cln)[a, b).

(a) Iffor every subinterval Ie [a, b]

then either f or -f is in C(uo , UI '00" Un-I)'
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(b) If for every subinterval IC [a, b] and every p.b.a T'Ll =

T'Ll(f, II . III), z(f - T'Ll) = n then either f or -f is in C(uo , ul , ... , Un-I)'

Proof If neither f nor -f is in C(uo , Ul , ... , Un-I) then the assumptions
onf and on {uo , Ul , ... , un} together with Lemma 3.1 imply the existence of a
subinterval I C [a, b] for which an(f, II . III) = O. On this subinterval
En(f, II . III) = E,i_l(f, II . ill)' Moreover any p.b.a Tn- l = T;JLl(f, II . iiI) to f
from An_Ion I with respect to II . I!l is also a p.b.a to f from An and thus
either z(f - TLl) > n or f - TLI vanishes on a subinterval. Thus, a
contradiction is achieved and the theorem is proved.

The question arises whether the last theorems are valid without the
assumptions that {uo , Ul '00" un} is an EeT-System and fE Cln)[a, b], as is
proved for the sup-norm in [1]. Another question is whether the assumption
that the norms in Theorem 3.2 constitute a continuous class-which is
essential to the proof of this theorem-can be removed.

For n = 1 we give an affirmative answer to these questions, concerning
part (b) of Theorem 3.2. In this special case the nature of the problem is
quite simple and thus its proof does not seem to have a direct generalization
for n > 1.

THEOREM 3.3. LetfE era, b], and let uo(x) E C[a, b] be a positive function.
Iffor every subinterval IC [a, b] there exists a sign-monotone norm 11'111' and
p.b.a Tt = Tt(f, II . Ill) = ctuo such that z(f - Tt) = I, then either for -f
is in quo).

Proof If both f and -f are not in quo), then there are points a, 13,
a < a < 13 < b, such that

Ll (Un f) = o.
a 13

We show that in I = [a, 13], z(f - Tt) > 1 for every p.b.a. To* to ffrom .110

in every sign-monotone norm. Indeed, by Theorem 1.I, z(f - Tt) ~ 1.
Suppose z(f - Tt) = 1 and denote by Z E [a, 13] the zero off - T;' Since

Ll (Un f) Ll (Uo f - r:) I uo(a) uo(f3) I 0
.'X 13 = a 13 = f(cx) - r~(a) f(f3) - r;(f3) =

and since uo(n:) > 0, uif3) > 0 then Z = a (z = 13) would imply f(f3) 
Tt(f3) = 0 (I(a) - T6'(n:) = 0) in contradiction to the assumption
z(f - To) = 1. But if Z E (n:, 13) then
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and the determinant

E. KIMCHI

J (U~I~) O.

which is again a contradiction.
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